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Abstract

This document provides an overview of the core concepts, usage, applications, and nor-
mative frameworks of public-key infrastructures. Moreover, special attention is devoted to
the state-of-the-art research on quantum-safe public-key infrastructures, and to hybrid so-
lutions that safeguard compatibility with legacy systems and that remain secure as long as
at least one between their classical and their quantum-safe component is secure.

1 Management Summary

This document forms a deliverable for the HAPKIDO (Hybrid quantum-safe Public-Key Infras-
tructure Development for Organisations) project. Currently-used PKIs (Public-Key Infrastruc-
tures) are presented in the first part of the document, while the second part is devoted to a
literature overview of quantum-safe PKls.

The document takes a fairly broad approach, and also discusses cryptographic protocols which
do not, strictly speaking, fall under PKIs, but that do use PKIs to manage their keys. This is
motivated by the fact that a transition to quantum-safe PKIs cannot be done without taking into
account the impact on the systems that rely on PKls.

In terms of quantum-safe PKIs, a few proposals have focused on the X.509 standard, which
is currently the most widely used certificate format for PKIs; these proposals describe how to
extend the X.509 certificate format (and associated functions) to a hybrid quantum-safe variant.

Several widely-used protocols make use of PKIs, such as TLS, SSH and S/MIME. TLS is used
for secure communication, SSH is used to operate network services securely over an unsecured
network and S/MIME is used to encrypt and sign mails. With respect to the migration of these
protocols to quantum-safe alternatives, TLS has received most attention, whereas SSH has been
investigated to a lesser extent and S/MIME has only been addressed sporadically.

We also make the remark that some quantum-safe implementations of functionalities such
as Virtual Private Network (VPNs) have been proposed, but with no accompanying publications.
These are reported on but not fully analysed here.

2 Introduction

Modern digital societies, and the Internet in general, are currently extremely dependent on
asymmetric cryptography, also known as public-key cryptography. This branch of cryptography,



founded in the mid-seventies, greatly simplifies communication of keys and enables entirely new
functionalities such as digital signatures and key exchange, compared to the exclusive usage of
symmetric cryptography. The conceptual difference between these two types of cryptography
is that asymmetric cryptography uses two different keys—a public key and a private key —
whereas symmetric cryptography uses only one shared key.

However, management of keys of asymmetric cryptographic systems is a complex task, ar-
guably made of capital importance by the large number of digital systems that rely on asymmet-
ric cryptography nowadays. Keys of asymmetric cryptographic systems are typically managed
by complex systems known as public-key infrastructures, or PKls for short. PKIs can be seen
as ecosystems comprising entities, functionalities and cryptographic specifications, which ensure
the security of private keys and the authenticity and integrity of public keys.

The security of asymmetric cryptography, however, faces a threat posed by the looming avail-
ability of large-scale quantum computers. As showed by Shor in 1994 [62], such a device would
be able to break most currently-used asymmetric systems, by efficiently solving the computa-
tional problems whose hardness is supposed to guarantee the security of the system. Symmetric
cryptography is also affected by quantum computing, but to a much less severe degree, and
extension of key length is believed to be sufficient to guarantee security in this setting.

While no large-scale quantum computer exists nowadays, progress is fast and such a device
could be available within one or two decades [41]. While this might seem like a reasonable amount
of time, experience shows that migration of widely-used cryptographic schemes is an extremely
lengthy and complex process: previous and less invasive migrations like those to elliptic-curve
cryptography and to new hash functions took a long time to be fully integrated. Furthermore,
so-called “store-now, decrypt-later” attacks mean that a migration will have to be realised much
earlier than the advent of a large-scale quantum computer for some specific sectors.

PKIs arguably form a challenging, yet extremely important part of this migration to quan-
tum-safe cryptography, given their ubiquity and the large number of roles and parties that govern
them.

This document is meant to provide an overview of state-of-the-art PKI systems and on
previous research on quantum-safe PKIs. Particular attention is devoted to research on hybm’cﬂ
systems, which support both classical (i.e., non-quantum safe) and quantum-safe cryptography.
This is a highly desirable property, since a “big-bang” migration, occurring in a single step, to
quantum-safe PKIs does not seem realistic given the high number of parties and legacy systems
involved; therefore, safeguarding compatibility with legacy systems becomes necessary. Hybrid
systems provide compatibility by their ability to switch off or ignore the quantum-safe part when
interacting with legacy systems. Moreover, hybrid systems offer strongest-link security, meaning
that they are secure as long as one of their two components is secure. This is a very desirable
property as well, given quantum-safe solution have received less analysis and attention compared
to classical ones: their exact security level and the necessary parameters to achieve these levels
are thus less understood, and relying on quantum-safe systems alone could pose security risks.

Two types of solutions exists nowadays to secure asymmetric cryptography against quantum
computers: those that rely on effects of quantum mechanics, and those that do not, and can
therefore run on existing information-technology systems. The first one is referred to as quantum
cryptography, and revolves around the concept of quantum-key distribution or QKD for short,
while the second is called post-quantum cryptography. The focus of this document is on the
latter, given that the HAPKIDO project aims to be compatible with current systems, and
given that QKD does not form a direct replacement for asymmetric cryptography; consequently,

1We make the remark that the term “hybrid” is sometimes used with a different meaning in the context of
cryptography, indicating systems that uses both asymmetric and symmetric cryptography.



we understand “quantum-safe” to mean “using post-quantum cryptography” in the rest of the
document.

This overview document also discusses the systems that make use of PKIs to manage the
associated keys, since these have to be taken into account as well when considering a migration
to quantum-safe PKIs.

The rest of this document is organised as follows. Section [3]briefly presents the cryptographic
concepts that are needed to read this document, and provides references for further reading.
Section 4] introduces basic PKI notions. Section [5| discusses important protocols that make use
of PKIs to manage keys and identities; applications of these protocols are presented in Section [6]
Finally, Section [7] presents current state-of-the-art work on quantum-safe PKIs and associated
protocols and applications.

3 Cryptographic Prerequisites

In order to make this document self-contained, this section provides a brief overview of the cryp-
tographic notions needed to understand PKIs. Notice that this overview is kept on a succinct,
high-level form; the reader can refer to, e.g., [38, 30] for a more complete and formal discussion
of these concepts.

3.1 Symmetric Cryptography

Symmetric cryptography plays an important role in PKIs and their application. As mentioned
in the introduction, an increase in key length is believed to be sufficient to guarantee security
of symmetric cryptography against large-scale quantum computers; this increase is relatively
modest and is therefore generally manageable by protocols and hardware that run symmetric
cryptographic systems.

Ciphers. Symmetric encryption systems are typically called ciphers. Ciphers use only one key,
which allows both to encrypt, i.e., turn a plaintext into a scrambled ciphertext, and to decrypt,
which turns a ciphertext back into the original plaintext. There are various security notions for
these ciphers that describe which types of attacks the cipher is secure against.

Hash functions. While they do not, strictly speaking, have an associated key at all, at least
in the basic meaning of the concept, (cryptographic) hash functions are typically listed under
symmetric cryptography. Hash functions take as input a plaintext of arbitrary length and turn
it into a short message of fixed length called digest. The process is irreversible: it is unfeasible
to recover the original message when given a digest (for an appropriate parameter choice).
Furthermore, it is also unfeasible to find collisions, i.e., pairs of distinct plaintexts that lead to
the same digest.

3.2 Asymmetric Cryptography

We list below two fundamental concepts from asymmetric cryptography. As mentioned in the
introduction, virtually all currently-used asymmetric systems are vulnerable to attacks from
large-scale quantum computers, and need to be replaced by quantum-safe alternatives.

Encryption Schemes and Key-Encapsulation Methods. An asymmetric encryption
scheme provides a similar functionality as a symmetric cipher, but works with two keys. One,
the public key, can be freely disseminated and only enables encryption of plaintexts. The other



one, the private (or “secret”) key, should be protected from unauthorized access and enables
decryption of ciphertexts, thereby recovering the original message.

Since encryption and decryption of asymmetric schemes are typically quite inefficient when
compared to symmetric ciphers, it is common to use asymmetric encryption to only encrypt the
key material of a symmetric cipher, and then to use the cipher to encrypt data instead. Systems
that describe the details of this process are called key-encapsulation mechanisms or KEMs for
short.

Digital Signature Schemes. In contrast to encryption schemes, digital signatures do not
have a natural symmetric counterpart. Digital signature schemes use a private key to associate
to any given message a short digital element known as the digital signature. With the public
key, which once again can be freely disseminated, users can verify validity of the signature. The
security of a signature scheme dictate that it should be unfeasible to produce a valid signature
(i.e., that will be accepted by a given public key) without knowledge of the associated private
key. This property is referred to as unforgeability.

4 General PKI Notions

This section gives an overview of the core notions of PKIs, elaborating on the functionalities
achieved by PKIs, on the involved parties, and on relevant certificate systems. Notice that this
section does not aim to provide accurate definitions of these concepts; the reader can refer to
existing introductory work [7] to this end.

4.1 Basic Functionalities and Trust Models

PKIs can be seen as ecosystems consisting of functionalities, entities, and procedures that enable
the creation, distribution, verification, and management of keys of asymmetric systems. The
core goal of PKIs is to ensure that users can obtain the public key of a given entity and be sure
that this public key indeed belongs to the entity, and that is valid. After this check, the public
key can then be used for its corresponding cryptographic functionality (encryption/verification
of a digital signature).

PKIs also address other aspects of the key management of asymmetric systems; the most
important examples are the following:

e PKIs ensure that users obtain certified information on how to use a given public key. This
information includes the cryptographic scheme the key belongs to and its parameters, the
validity period of the key, and possible restrictions on its usage.

e PKIs ensure that public keys that are compromised (or anyway no longer fit for usage) get
no longer accepted by users.

e PKIs describe how both public and private keys should be created, in terms of the involved
software and hardware, and how private keys should be stored and used while keeping them
private.

e PKIs enable authentication of users in access-control mechanisms.

As stated before, PKIs can be seen as ecosystems, in the sense that they consist of the
functionalities (intended as computer protocols) that are used to achieve the above goals, of the



entities that use these functionalities, and of the requlations and procedures that describe which
functionalities should be used by which identity, for which purpose.

We give more details on how PKIs achieve the above goals in the following sub-sections.
Since management of private keys and of public keys are quite orthogonal to each other, we
discuss them separately.

4.1.1 Private-Key Management

Private keys need to be maintained throughout their entire life cycle, from creation to their
eventual archival or destruction. The procedures that describe how to perform all the necessary
maintenance steps are typically understood to be part of PKIs, and we therefore present here
these procedures.

Once again, the main goal of private-key management is to ensure that private keys remain
private. To this end, special measure need to be taken, either by making use of specific software
functionalities known as Personal Security Environments, or PSEs for short, or by resorting to
specific hardware.

PSEs typically protect private keys by ensuring that only users possessing a certain personal
identification number, or PIN, can access private keys. A common standard for this is given by
PKCS#12 [4§].

Examples of hardware to protect private keys are smart cards and hardware security modules.
Both these systems exclusively manage cryptographic operations involving private keys, and
prevent said keys from being accessed by systems that are interfaced with the hardware, e.g.,
smart card readers and computers connected to, or containing, hardware security modules.

4.1.2 Public-Key Management

In asymmetric cryptography, private keys do not need to be communicated in order to establish,
for instance, secure communication channels or in order to verify digital signatures: only public
keys need to be exchanged to this purpose, and these keys do not need to remain hidden from
eavesdroppers. This forms one of the main advantages of asymmetric cryptography.

However, it remains necessary to ensure that the exchanged public keys are authentic and
valid. Authenticity means that the public key which is claimed to belong to a given entity
does indeed belong to that entity. Validity is a term with a wide meaning that encompasses,
among other, assurance that the public key can perform the desired functionality, that it has
not expired, and that it is fulfils the requirements of a given task (e.g., that is of sufficient length
to guarantee security), where such a task is also specified and validated by a PKI. Furthermore,
users must be sure that key properties have not been altered.

PKIs ensure the above goals in several ways, which will be described later. Furthermore,
PKIs also provide a system to revoke, or anyway manage, keys which become insecure, for
instance following a security breach or after a given expiration time window.

4.1.3 Trust Models

As discussed above, PKIs are essential for the usage of asymmetric cryptography. This subsection
further explains how PKIs achieve this goal, focusing in particular on the establishment of trust
in the authenticity and validity of public keys; we say that a user trusts the public key of an
entity if they are convinced that that public key does indeed belong to that entity, and if they
accept to use that key for its corresponding cryptographic protocol.

Several methods, with different degrees of complexity, are used for this purpose.



Direct trust. Direct trust is a first and very simple method: public keys are simply exchanged
in a way which is deemed impervious to attacks or manipulations to malicious entities; users
thus “directly” trust a given key-pair or entity. This is the case, for instance, for keys included
in installation discs of Linux distributions, or for public keys included in web browsers.

The applications of direct trust are actually fairly limited, due to the difficulty of exchanging
keys in a secure way; for this reason, more complex trust methods, described below, complement
it nowadays.

Hierarchical trust. Hierarchical trust is a very widely used paradigm to establish trust in
PKIs. Within this paradigm, keys are verified by some specific entities, known as certificate
authorities or CAs for short, which typically also accept legal liability for this duty. CAs certify
that keys are valid and belong to a given entity by issuing a certificate; we will elaborate on
certificate purposes and structure in the following section, but the crucial point here is that a
certificate is digitally signed with the private key of the CA, and that a certificate’s validity can
therefore be checked with the public key of the CA.

As an example, assume that a user obtains a public key pk, allegedly belonging to an entity
Alice, and that they wish to check this. We assume that there is a CA that the user “trusts”,
meaning that they possess the CA public key pkcy, are convinced of its authenticity, and are
therefore willing to use it for its corresponding task, namely checking validity of certificates
issued by the CA. If the user is provided by a certificate signed with the private key of the CA,
which states that pk, does indeed belong to Alice, they can then use the CA public key pkcy
to check the validity of this signature and thus be convinced of the authenticity of Alice’s public
key.

Now this procedure does generate a chicken-and-egg problem, since users still need to trust
the public key of CAs. For some CAs, this is obtained by direct trust; we then speak of root
CA. However, given that direct trust is difficult to obtain (due to the reason discussed above),
users typically only trust a very limited number of CAs; moreover, for practical reasons, CAs
can only certify limited numbers of public keys. Therefore, trust is also established in a different
way, which justifies the usage of the name “hierarchical” CAs issue certificates that validate the
public keys of “lower-level” CA certificates. Users thus get a chain of certificates that validate
each validation step, and which ends in a certificate issued by a root CA.

An important remark is that when a CA issues a certificate for another CA, they also imply
that they can vouch for the honest behaviour of said CA, and accept legal liability for it.

Web of trust. An alternative to the hierarchical trust, which nevertheless has nowadays a
niche role, is given by the web of trust. This concept was introduced by Phil Zimmermann for
the PGP (Pretty Good Privacy) system [74]. On the web of trust, a key-pair is trusted by a
user it is either directly obtained from its owner or if it signed by sufficiently many users that
are deemed trusted.

Typically, signers on the web of trust do not accept liability, which explains why most modern
PKIs rely on hierarchical trust instead.

4.2 PKI Certificates

A fundamental tool in PKIs to establish trust is given by certificates. Certificates confirm the
authenticity and validity of public keys, certify identities of users, and dictate how asymmetric
keys are supposed to be used in order to establish secure communication.

A certificate is a digital record containing, among other, the following information:



The identity of the issuer of the certificate;

The identity of the subject of the certificate, i.e., of the entity the public key is confirmed
to belong to;

The public key associated to the subject;

The cryptographic algorithm which is supposed to be used with the public key;

The serial number, validity period and (optional) restrictions in the usage of the certificate.

Crucially, the issuer of a certificate signs it and appends the signature to the certificate. In
this way, if the issuer is deemed trustworthy based on a certain trust model(cf. previous section),
then we can use the issuer’s public key to verify that the digital signature of the certificate is
valid. If this is the case, then the subject of the certificate and the public key associated with
the subject can also be trusted due to the unforgeability of the digital-signature scheme.

While several certificate formats exist, the most widely used is, by far, the X.509 format,
specified in the ITU-T standard with same reference code [27].

5 Protocols that use PKIs

As discussed above, PKIs allow users to establish trust in electronic information systems. This
section presents the most widely used cryptographic protocols for which PKIs establish the key
infrastructure needed to securely run cryptographic applications. This is not meant to explain
how PKIs are used in these protocols as this will be accomplished when discussing the use-cases.
In this case, we define use-cases and a scenario in which one or more of these protocols are chosen
and configured to meet the use-case’s requirements. Note that some technical knowledge of basic
networking protocols such as TCP and UDP are needed. For information on these protocols,
please refer to resources such as [16].

5.1 Transport Layer Security (TLS)

The Transport Layer Security (TLS) is a TCP-based security protocol that ensures the authen-
tication, confidentiality, and integrity of communication over the Internet given a reliable link
between the communicating parties. It is maintained by the Internet Engineering Task Force
(IETF) and, at the time of writing, the most recent version is TLS 1.3, which is standardized
in RFC 8446 [56]. For further technical details of this protocol, please refer to the RFC. As per
its name, it operates in the Transport Layer of the OSI model.

TLS is meant to be used as a building block in various applications as TLS is application
independent. Hence, TLS is widely used in a variety of settings ranging from HTTPS, secure
email all the way to smartcards and satellite communication.

TLS can be split into two sub-protocols, namely the handshake protocol and the record proto-
col. Essentially, the handshake protocol authenticates the parties, negotiates the cryptographic
parameters and at the end, establishes session keys. These parameters include algorithms, key-
sizes and shared secrets.

After the handshake protocol has terminated, the parties can start securely communicating
using the cryptographic primitives that they agreed on in the handshake protocol. This is
done using the record protocol, which cuts the messages into chunks and these chunks are then
encrypted using the established session keys and sent to the other party. The encryption (and
data integrity) is achieved by utilizing Authenticated Encryption with Associated Data (AEAD).



The output of decrypting via AEAD is either the plaintext or an error that indicates that either
the decryption or authentication failed.

TLS defines a list of cryptographic algorithms that it supports, and this list differs from
version to version. For example, TLS 1.3 dropped the support for many legacy ciphers, such as
RC4 and DSA.

5.2 QUIC

QUIC is a UDP-based stateful and secure transport protocol [28]. In this case, secure is defined
as providing the confidentiality, integrity, authenticity, and availability of the traffic. It operates
on the Transport Layer of the OSI model. It is maintained by the Internet Engineering Task
Force (IETF) and is standardized in RFC 9000 [28]. For further technical details of this protocol,
please refer to the RFC. Its aim is to address the latency issues that have been associated with
TCP [5§].

QUIC ensures that, despite using UDP, each packet of the handshake is reliably delivered
and in order. Since the QUIC encrypts and authenticates its packets, the handshake protocol is
also encrypted and authenticated where possible. Furthermore, just like TLS, packet encryption
and authentication is achieved via AEAD. QUIC also integrates TLS for the detection of lost
packets.

5.3 Secure Shell Protocol (SSH)

The Secure Shell Protocol (SSH) is an application protocol that allows for parties to perform se-
cure remote logins and multiple secure network services, such as remote execution of commands.
It is maintained by the Internet Engineering Task Force (IETF) and the most recent version is
SSH-2, which is standardized in RFC 4251 [36]. For further technical details of this protocol,
please refer to the RFC.

SSH can be split into three sub-protocols, namely the Transport Layer Protocol, the User
Authentication Protocol and The Connection Protocol. The Transport Layer protocol provides
server authentication, confidentiality and integrity, the User Authentication Protocol authenti-
cates the user and the connection protocol essentially allows for interactive login sessions, remote
execution of commands through an encrypted channel [35].

For server authentication, the server contains a public host key, which allows for the user
to verify that they are talking to the correct server. Clearly, the user must know the server’s
public-key beforehand, or have a way to verify the key. Verifying the key is typically done by
either having the server and its corresponding key stored in a local database that belongs to
the user or by validating the key with a Certification Authority. Furthermore, session keys are
established during the Transport Layer Protocol.

Once the server is authenticated, the user needs to be authenticated. This can be achieved via
a combination of public-key authentication, password-authentication and host-based authentica-
tion [34]. Public-key authentication is done by the server storing a user’s public-key and having
the user proving that they have knowledge of the private-key. Password-based authentication
is done by the user inputting a password to authenticate themselves to the server. Host-based
authentication means authenticating a user based on where the connection of the host is coming
from and the username.

5.4 Secure/Multipurpose Internet Mail Extensions (S/MIME)

The Secure/Multipurpose Internet Mail Extensions (S/MIME) is a security standard that allows
for MIME data to be signed or encrypted with public-key cryptography [59]. MIME data includes



formats such as audio, video, non-ASCII characters. It is maintained by the Internet Engineering
Task Force (IETF) and, at the time of writing, it is defined in RFC 8551 [59] and RFC 3369 [24]
and its latest version is S/MIME Version 4.0. For further technical details of this protocol,
please refer to the RFCs. RFC 8551 defines the Cryptographic Message Syntax (CMS), which is
the syntax to encrypt, sign and authenticate arbitrary message content. S/MIME v4 essentially
is the standard of signing and/or encrypting MIME data according to the CMS.

There exist three classes of S/MIME certificates, each of which provide a different level of
assurance of the certificate owner’s identity. It is important to note that whilst S/MIME is
commonly used in email communication, it is present in many other settings. For example,
according to [24], S/MIME can be used in any setting that involves MIME data, such as HTTP.

5.5 Pretty Good Privacy (PGP)

Pretty Good Privacy (PGP) is a security protocol that provides confidentiality and data integrity
via both symmetric and asymmetric encryption and digital signatures [I8]. For further technical
details of this protocol, please refer to the RFC. It also provides key management and certificate
services. It is mainly used to secure MIME objects and email communication.

PGP is the generic name of the protocol, but there also exists proprietary commercial soft-
ware called PGP that implements the PGP protocol and is owned by CA Technologies [46].
Hence, this manuscript will refer to OpenPGP when mentioning PGP, unless stated otherwise.
OpenPGP is a security standard maintained by the Internet Engineering Task Force (IETF)
and is defined in RFC 4880 [I8] that specifies ow to implement the PGP protocol. A popular
open source implementation of the PGP algorithm is GnuPG, also known as GPG [37]. It is
developed by the GNU Project and is compliant with [18].

Confidentiality is done via symmetric and asymmetric encryption. Firstly, PGP will ran-
domly generate a nonce that is used as a session key, which is then encrypted with both the
sender’s and recipient’s public key. A session key can also be derived from a passphrase or any
other shared secret. This allows for both parties to obtain the session key. The message is then
encrypted with the session key and sent to the recipient, who is then able to decrypt it via the
session key.

For authentication and data integrity, the sender will initially hash the message. A signature
is then generated from the hash and the sender’s private key, which is sent to the recipient
alongside the original message. The recipient generates a hash of the received message and
verifies it using the message’s signature using the sender’s public-key. Note that confidentiality
and authentication can be performed on the same message at the same time. The signature is
first generated and the signature and original message are encrypted as discussed above.

RFC 4880 introduces the concept of trust signatures. These have different levels of trust
and are intended that the public-key does in fact belong to the sender. At Level 0, the trust
signature provides the same level of trust as a regular signature. At Level 1, the key is asserted
to belong to the sender and at Level 2, the key is asserted to belong to the sender by a Certificate
Authority. Furthermore, PGP allows for the revocation of certificates.

An important concept that was introduced by PGP is the Web of Trust. As PGP commu-
nications occur, users will begin to accumulate many self-signed certificates from other users
and may trust some of these users as introducers. These introducers distribute certificates that
they trust to other users. As a consequence, the original author of PGP, Philip Zimmermann,
stated that “this will cause the emergence of a decentralized fault-tolerant web of confidence
for all public keys” |[74]. Note that this is a decentralized alternative to modern Public Key
Infrastructures.



5.6 Internet Protocol Security (IPsec)

Internet Protocol Security (IPsec) is a security protocol that encrypts and authenticates IP
packets between communicating parties [20]. It supports both IPv4 and IPv6 packets. Its main
use is in VPNs and has the ability to provide either end-to-end or host-to-host security. A
common alternative to IPSec for the usage of VPNs is OpenVPN [44]. As the name suggests,
it operates on the Internet Layer (Layer 3) of the OSI model. It is maintained by the Internet
Engineering Task Force (IETF) and, at the time of writing, it is defined in many RFCs, with
RFC 6071 [20] providing an overview of all IPSec related RFCs. For further technical details
of this protocol, please refer to the RFCs. The most recent version of the protocol is IPSec-v3.
It is important to note that IPSec does not deal with the distribution of keys. This is usually
done by the Internet Key Exchange protocol.

IPSec consists of two main protocols that provide traffic security: the Authentication Header
(AH) and the Encapsulating Security Payload (ESP). The AH provides data integrity, data-
origin authentication and relay-protection. Note how the AH does not provide any form of
confidentiality. It can operate in either a transport-mode or a tunnel-mode.

The ESP provides confidentiality, data integrity, data-origin authentication and relay-pro-
tection. Just like AH, ESP can operate in either a transport or tunnel-mode. When used in
transport-mode, it protects the upper-layer data but does not provide any form of protection to
the IP header. When in tunnel-mode, it completely protects the inner-encapsulated IP packet,
but not the outer IP header.

An important IPSec concept are Security Associations (SA). They are agreements between
communicating parties on the security specifications of IPSec. To identify these agreements,
each IPSec packet includes an identifier that maps to a unique SA. This identifier is called a
Security Parameter Index (SPI). These are normally stored in each parties’ Security Association
Database (SAD). There is also a Peer Authorization Database (PAD), which contains data
necessary to perform peer authentication.

5.7 Internet Key Exchange (IKE)

Internet Key Exchange (IKE) is a security protocol that, as the name suggests, is responsible for
the exchanging of keys in the IPSec protocol [20]. It is maintained by the Internet Engineering
Task Force (IETF) and it is defined by RFC 6071 [20]. For further technical details of this
protocol, please refer to the RFC. The most recent version of IKE is IKEv2.

IKE performs mutual authentication between communicating parties and establishes an IKE
Security Association (SA). This SA includes the exchanged key and a set of cryptographic
algorithms to be used in other steps in the IPSec.

During the IKE protocol, the flow of messages always have the structure of a request and
then a response. The first set of messages called IKE _SA INIT negotiates security parameters,
sends nonces and any other cryptographic values. The second set of messages called IKE AUTH
verifies the identities of the communicating parties (normally via X.509 certificates), and sets
up a further SA for either AH or ESP.

6 Use-Cases

The protocols presented in the previous section can be used in several application scenarios,
which we call use-cases here. These use-cases are briefly discussed in this section; notice that
a full and detailed description would be beyond the scope of this document, and we therefore
only give a short and high-level overview.
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6.1 HTTPS

One of the main uses of TLS is securing the Hypertext Transfer Protocol (HTTP). By default,
HTTP is communicated in an unencrypted and unauthenticated manner through the Internet,
which is not desirable when sending and receiving potentially sensitive information. Since TLS is
application-independent, HTTP can be used over TLS and the process of doing such is detailed
in RFC 2818 [55]. Henceforth, HTTPS provides confidentiality and integrity to the data being
transmitted over the Internet.

Another important use case of HI'TPS is for website authentication. This is the process of
asserting the identity of the website and is done via X.509 certificates. As previously discussed,
this certificate proves ownership of the public-key and hence, the website. This is done during
the TLS handshake protocol [57]. A website may also request the user’s certificate for mutual
authentication.

6.2 Secure Email

There exist many techniques and technologies for securing email communications, such as
DMARC [33] and SPF Records [32]. However, the most relevant technique relating to pub-
lic-key infrastructure is via PGP.

As discussed in Section , PGP encrypts and signs (email) messages and authenticate them
via PGP or X.509 certificates. The main difference is that at the end of an X.509 certificates
chain, a Certificate Authority must be present whilst PGP certificates can be signed by anyone
and not a Certificate Authority. However, as mentioned in Section[5.5] PGP certificates can also
be purchased, which effectively means that the certificate is signed by a Certificate Authority.
Hence, Certificate Authorities can (but do not have to) sign PGP certificates.

S/MIME can also be used to encrypt and sign MIME content in email messages with the
aforementioned S/MIME certificates.

6.3 Secure Documents

Content that is accessed via HTTP can be encrypted via XML-Enc, which is specified by
W3C [12] and/or signed via XML-DSig, which is specified in [42]. These can include X.509
certificates, which hence requires the usage of a PKI. Furthermore, ETSI defined XAdES, which
extends XML-DSig to comply with eIDAS [I5]. eIDAS is a European Union regulation concern-
ing electronic identification and other trust services for electronic transactions [69]. Another
document format that can make use of PKIs are PDFs. PDFs can be signed via the eIDAS
compliant PAdES [14] to be legally recognized in the European Union.

6.3.1 Wireless Networks

One of the primary uses of PKIs for wireless networks is via the IEEE 802.1X protocol [20],
which provides access control for connecting to local and metropolitan networks. For example,
the Wi-Fi services, eduroam, which provides Internet access for users in higher education [13],
utilizes 802.1X.

As a high-level overview, 802.1X involves three parties, a client (also known as a supplicant),
the network device that authenticates the client and an authentication server. For the client
to authenticate themselves, they must either provide a valid username/password combination
or a valid certificate. In turn, the user may also provide a certificate to the user for mutual-
authentication. These certificates are hence managed by a PKI.
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6.3.2 Virtual Private Networks

With the advent of working from home in recent years, the topic of Virtual Private Networks
has found its way into the common jargon. As mentioned in Section [5.6] VPNs often use IPSec
to provide a secure virtual tunnel between endpoints. Other technologies include OpenVPN [44]
or WireGuard [71]]. Irrespectively of the technology employed by the VPN; either a digital X.509
certificate or a valid username/password combination are used for authenticating users. Fur-
thermore, mutual authentication can be achieved by the server also providing a valid certificate.
Once again, a PKI must be in place to manage these certificates.

6.3.3 Internet of Things

The main difference between PKIs for Internet of Things (IoT) and more “traditional” uses of
PKIs such as VPNs is the amount of devices that require authentication via certificates. Each
device connected to the Internet requires a certificate and given the number of IoT devices that
can exist within a single household, this could put stress on the CA servers. Several CA now
offer certificates and enrolment services specifically for IoT devices, such as GlobalSign [23].
These generally involve the ability of customizing fields in the X.509 to suit the IoT devices that
are being certified.

7 State-of-the-Art Work on Quantum-Safe PKIs

As mentioned in the introduction, all currently-used public-key cryptographic schemes can be
broken by a large-scale quantum computer, which is expected to be developed within the coming
decades. Many components of PKIs, as well as many cryptographic protocols that use PKIs to
manager their keys, therefore need to be patched with quantum-safe building blocks.

This section elaborates on the current state of research on quantum-safe alternatives for
PKIs. We first discuss cryptographic building blocks, and then focus on PKIs and cryptographic
protocols.

7.1 Cryptographic Building Blocks

As discussed in Section [3] large-scale quantum computers will render currently-used asymmetric
building blocks insecure; these building blocks, namely asymmetric encryption schemes, key-en-
capsulation methods, and digital-signatures schemes, are crucial ingredients countless crypto-
graphic protocols that are used in modern electronic systems, and a lot of effort has therefore
been devoted into designing and analysing quantum-safe alternatives for these building blocks.
To move to a hybrid infrastructure it is essential to combine pre-quantum and post-quantum
key encapsulation and digital signatures algorithms.

The drawback of quantum-safe schemes is the size of the cryptographic material (keys, sig-
natures, and ciphertexts): long public keys and slower algorithm execution may result in slower
protocols, affecting the usability of the schemes in the current infrastructure.

7.1.1 Post-quantum NIST candidates

In 2016, the National Institute of Standards and Technology (NIST) initiated a process to
determine which quantum-safe (or post-quantum) cryptographic building blocks are going to be
used to replace pre-quantum ones. Several key encapsulation mechanisms (KEM), public-key
encryption schemes (PKE) and digital signature schemes (DSS) have been submitted. These
cryptographic schemes base their security on computational problems that are supposed to be
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computationally unfeasible to solve even for quantum computers. The majority of these schemes
are Hash-based, Lattice-based, Code-based, Isogeny-based or Multivariate-based schemes:

e Hash-based schemes base their security on the security properties of functions;

e Lattice-based schemes base their security on a class of hard problems like LWE (learning
with errors), SVP (shortest vector problem), CVP (closest vector problem) and more;

e Code-based schemes base their security on the hardness of decoding in a linear error
correcting code;

e [sogeny-based schemes base their security on the hardness of computing a certain isogeny
between elliptic curves;

e Multivariate-based schemes base their security on the hardness of solving a system of
multivariate polynomial equations.

According to NIST guidelines, the evaluation of all the schemes is performed on 5 levels of
security described in [43]

At the time of writing, the finalists of NIST contest have been publishedﬂ The final choice
of NIST for the candidate schemes will be made official in April 2022. The finalist schemes are
reported in Table

] Name ‘ Scheme ‘ Type ‘
Classic McEliece | PKE/KEM Code-based

Crystals-Kyber PKE/KEM Lattice-based
NTRU PKE/KEM Lattice-based
SABER PKE/KEM Lattice-based
Crystals-Dilithium DSS Lattice-based
Falcon DSS Lattice-based

Rainbow DSS Multivariate-based

Table 1: NIST Finalists

However, a new vulnerability has been recently found on Rainbow [4]. This fact stresses even
more the necessity to move to a hybrid PKI until quantum-safe algorithms are mature enough
to be deployed independently.

Along with the finalists, NIST has published a list of alternative candidates. The alternative
candidates are reported in Table

To ensure the maximum security, it is recommended to use strong cryptographic techniques to
combine pre-quantum and post-quantum schemes: the hybrid schemes will remain pre-quantum
safe until quantum computers are deployed while the security of post-quantum schemes reaches
its maturity and once post-quantum schemes will be employed, the hybrid scheme will remain
secure.

However, even with secure pre-quantum and post-quantum schemes, it is not straightfor-
ward to securely combine them together. To this end, scientific research is inspecting which
cryptographic combining mechanisms ensure the best security.

2More information can be found at https : // csrc . nist . gov /Projects / post-quantum-cryptography /
round-3-submissions
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Name \ Scheme \ Type

FrodoKEM | PKE/KEM Lattice-based

NTRU Prime | PKE/KEM Lattice-based
BIKE PKE/KEM Code-based
HQC PKE/KEM Code-based

SIKE PKE/KEM Isogeny-based
SPHINCS DSS Hash-based

GeMSS DSS Multivariate-based

Picnic DSS Hash-based

Table 2: NIST Alternative Candidates

7.1.2 Quantum-safe Cryptographic Combiners

Rigorously, the purpose of a cryptographic combiner is to turn two (or more) cryptographic
schemes, e.g., key-encapsulation schemes, into a single scheme that offers the same (or a similar)
functionality, i.e., is again a key-encapsulation scheme, and is secure as long as at least one of the
two (or more) original schemes is secure. Thus, applying such a combiner to a pre-quantum, say
factoring-based, and a post-quantum, say lattice-based, scheme, results in a new scheme that
remains secure unless both underlying schemes can be broken. Thus, even if there turns out to
be an unexpected weakness in the lattice-based scheme, as long as there is no sufficiently large
and reliable quantum computer (and no other progress on the factoring problem), the combined
scheme remains secure. And vice-versa, the combined scheme will withstand quantum attacks
if the lattice-based scheme is as secure as expected.

There are different approaches and techniques towards constructing cryptographic combiners.
For instance, one can aim for combiners that turn strongly secure (like CCA-secure) schemes
into a strongly secure scheme again, as in [22], or one can aim for combiners that turn weakly
secure schemes into a weakly secure scheme again and then apply a generic transformation to
eventually obtain a strongly secure scheme, as in [25]. The latter approach appears favourable
at first glance, since it puts weaker requirements on the underlying schemes; on the other hand,
standardized scheme are most likely designed to offer strong secure anyway, and so the latter
may introduce an unnecessary overhead by not exploiting the already-exist strong security. In
any case, when aiming for such a hybrid approach, one needs to deal with the fact that combining
schemes introduces a significant overhead in key- and ciphertext-size, and in computation time.

7.2 Quantum-Safe PKlIs

Having given an overview of quantum-safe cryptographic primitives, we now focus on PKIs. In
principle, simply replacing the quantum-vulnerable components of PKIs with quantum-safe ones
would make PKI systems quantum-safe. However, three factors complicate an actual implemen-
tation of this approach:

e Quantum-safe building blocks are typically not as efficient (in terms of running time of
the algorithms and of size of relevant elements) as pre-quantum ones.

e Designing hybrid quantum-safe PKIs (cf. Introduction) is not trivial and requires an anal-
ysis that depends on each component of a given PKI.

e The cryptographic protocols should be adjusted so that they can support the new func-
tionality and still be compatible with the existing infrastructure.
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This section discusses the scientific literature focused on adding quantum-security to X.509
certificates and on investigating their impact in terms of certificate size and efficiency loss.

7.2.1 Extended X.509 Certificates

A first attempt to extend X.509v3 certificates to support quantum-safe cryptography was pro-
posed by Bindel et al. [6]. The idea is to use the extension field in the certificates and insert
the quantum-safe signature and/or quantum-safe public-key. The extension field is considered
not-critical and can therefore be handled by users that have not yet migrated to quantum-safe
cryptography. In [6], a study is conducted whether the sizes of the quantum-safe algorithm
would exceed the maximum certificate sizes supported by the GnuTLS, Java SE, mbedTLS,
NSS and OpenSSL libraries. The results show that all libraries were able to correctly parse and
verify the certificates with the long signatures in the extension field.

A similar approach was independently presented to IETF in an Internet Draft [68]. This
document presents a method to extend the existing X.509v3 Certificates, Certificate Signing
Requests (CSR) and X.509v2 Certificate Revocation Lists (CRL) in such a way they can han-
dle multiple public-key algorithms. The document introduces non-critical extension fields that
contain info of alternative public-key algorithms and provide instructions on how these should
be handled.

Ultimately, the approach with which the two types of certificates are implemented is similar
in that all extensions dictate the use of two extra non-critical fields: one for the public key (and
its attributes) and one for the digital signature (and its attributes).

In the eventual scenario in which only a post-quantum scheme is used, due to the parameters
of the post-quantum algorithms, the size of certificates will be around 4.3 to 54 kilobytes as
opposed to pre-quantum certificates of 1 to 1.5 Kilobytes.

Scientific research was conducted separately on these types of certificates applied to mainly
TLS but also SSH, IKEv2 and others. It is reasonable to assume that the results on one type
of certificate also apply for the other ones, due to the similarity of the implementation of the
certificates and the validation of the results provided by their analysis.

For every protocol within the X.509 PKI, we report the result concerning: compatibility,
impact and integration. Concerning compatibility, we investigate if the current specification
of the protocol allows for a smooth transition and full support of quantum-safe algorithms.
Concerning impact, we investigate how the performance of the protocol changes due to their
large key sizes. Concerning integration, we inspect if there exists a library that implements the
protocol with quantum-safe algorithms.

7.2.2 CSR

The Certificate Signing Request (CSR) is an X.509 message sent from an applicant to a RA in
order to apply for a digital identity certificate. Raavi et al. [54] investigates the effect of adding
quantum security to X.509 certificates. Their primary focus is on the overhead in size and loss
in efficiently for the different security levels.

Compatibility and Impact The smallest post-quantum and hybrid certificates sizes are
provided by Falcon at level 1 with about 3000 bytes and level 5, with approximatively 4800
bytes certificate size, Dilithium is the best alternative at level 3 with circa 7500 byes certificate
size (Falcon does not have a level-3 security variant).

Concerning key-generation, Dilithium is the most efficient with respect to the time needed to
generate a valid key-pair. At security level 1 Dilithium is faster than RSA, and at level 3 and 5
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it is faster than ECC and in particular, the key-generation time in Dilithium-II and Falcon-512
is faster than RSA by 7.08 - 28.11 times. Regarding Certificate Requests, Dilithium outperforms
all post-quantum counterparts at all levels of security. On average, Dilithium, and Falcon reduce
the Certificate Request Generation time by about 2 times. For Certificate Generation, Dilithium,
and Falcon outperform all post-quantum counterparts at all levels of security. At security level
5 Dilithium is 10% - 15% faster than Falcon. For Certificate Verification, RSA is still the most
efficient at the lowest level of security. Among post-quantum schemes, Dilithium, and Falcon
have 7.61% and 4.76% more time overhead for verifications at level 1. Dilithium and Falcon
are more efficient than ECDSA on all security levels. Falcon is the most efficient among the
post-quantum algorithms for level 1 and 5.

Due to the difference in performances, Dilithium is the recommended for time-sensitive ap-
plications (any web server-client communication) but Falcon is a good candidate for Blockchain
certificate verification since blockchain protocols require more verification than signatures.

7.2.3 OCSP

The Online Certificate Status Protocol (OCSP) is a protocol used for obtaining the revocation
status of an X.509 certificate. Fan et al. [I7] also investigates the effect of adding quantum
security to X.509 certificates. The focus of their work is on the overhead in size and loss in
efficiently for command line and browser applications of X.509 certificates.

The analysis was performed on hybrid certificates modified according to the Internet
Draft [68] specifications based on the OpenSSL 1.1.1b libraries.

Compatibility and Impact For command-line applications, it is possible to set the maximum
size of the response via the API function 0CSP_set_max_response_length to allow OCSP to
process large certificate or a chain of certificates: setting a large response size length performed
successfully. For browser applications, tests were conducted on Firefox 66.0.3 and Internet
Explorer 11.0.9600.19326. Internet Explorer works correctly for the tested sizes, but Firefox has
a size limit for certificate sizes of 65.535 kilobytes.

7.2.4 CMP and EST

The Certificate Management Protocol (CMP) is a protocol used for obtaining X.509 digital
certificates. Enrolment over Secure Transport (EST) is a protocol that describes an X.509
certificate management, targeting clients that need to acquire client certificates and associated
certificate authority (CA) certificates. The analysis of post-quantum CMP and EST protocols
is performed by [I7]. No issues were found for CMP and EST as they support all sizes of the
quantum-safe certificate with minimal execution time impact.

7.3 Cryptographic Protocols Using PKIs

For cryptographic protocols that use PKIs to manage the associated keys, a similar observation
holds as for PKIs themselves (cf. beginning of Section : transitioning to a quantum-safe state
is not trivial, even with quantum-safe building blocks available, and especially when requiring
the new protocol to offer hybrid security and interoperability. As for Section [7.2] for every
protocol, we report the result concerning compatibility, impact, and integration.

A large body of research has been conducted on the impact of post-quantum algorithms on
the most commonly used protocols on the Internet. The core of the research was focused on
client /server communication (and implicitly with HTTPS application) but some research was
also conducted on embedded systems. Therefore, when we describe the scientific literature,

16



we implicitly refer to client/server communication, and we will be explicit when talking about
embedded systems. Furthermore, many initiatives have emerged with the goal to facilitate the
migration to quantum-safe internet: several internet drafts have been submitted to IETF and
the Open Quantum Safe (OQS) project has developed the library libogs with quantum-safe
cryptosystems to be included in the libraries that implement quantum-safe protocols.

7.3.1 TLS 1.2

As one of the most widely used protocol on the internet, TLS 1.2 has received the attention of
[6, 29, 10, [17] for Internet applications and client-server communication and [8] for embedded
systems.

The Internet drafts |61, 9] have been submitted to IETF.

Compatibility and Impact TLS supports data fragmentation for certificates up to 16.777
megabytes, which is more than sufficient for quantum-safe signatures, but TCP fragmentation is
enforced and fragments are at most 16 kilobytes large. This can create high loss rates especially
with UDP [6, 29].

Long certificates would not highly benefit from techniques like compression or caching.
Caching has the potential to speed up connection, but it could also potentially introduce vul-
nerabilities. On the other hand, compression would not significantly reduce the sizes of the
certificates because the digital signatures are very large and are difficult to compress due to
their large entropy.

The most common libraries and browsers were tested by [6] to determine if they support long
certificate sizes. Among all tested libraries, the library that could support the largest certificates
was Java SE with 1333.0 kilobytes. Almost all other libraries could process up to 43.0 Kilobytes
except for mbedTLS, which has a limit of 9.0 kilobytes. Among the web browsers, Safari could
support the largest certificates with 1333.0 kilobytes. Almost all other browsers, like Chrome,
Opera and Firefox, could support up to 43.0 kilobytes, with the exceptions of Microsoft Edge
and Internet Explorer, which could support up to 9.0 kilobytes.

An extension of this analysis was performed by [I7] where the analysis was conducted using
signature schemes with very large parameters like SPHINCS, Picniclbrl and GeMSS, validating
the results of [6]. The results show that the size limit of OpenSSL 1.0.2 is set to 102.4 Kilobytes,
but it can be increased by calling the appropriate API.

The work in [I0] tested the compatibility of NIST candidates in OpenSSL 1.0.2. Most of the
schemes were handled without issues; NTS-KEM was the only one that failed. FrodoKEM-1344
failed as well to be handled by OpenSSL 1.0.2, but as shown by [17], a change in the parameters
of the implementation would allow FrodoKEM-1344 to be used correctly.

The work in [29] takes a similar approach, and they test HSS in hybrid certificates. For
different parameters of a hash-based signature scheme, the average handshake took about 4
times longer than pre-quantum certificates with RSA signatures and the average of the number
of exchanged packets is slightly increased. When these certificates are handled by browsers like
Chrome and Firefox, in alignment with the results of [6], fragmentation and segmentation were
working properly for a certificate chain of total size 19 kilobytes. For certificate chains of 135
kilobytes, the browsers were failing to parse the certificates. Other experiments show that the
failure in the parsing was due to the certificate chain length and not the chain size.

In the embedded system setting, Kyber for key-exchange and SPHINCS™ for digital signature
were tested on a Raspberry Pi, an ESP32, a fieldbus option card and an LPC. Kyber was
recorded to be more performing than ECDHE on all platforms in terms of performance and
resource management. SPHINCS™ was noticeably less efficient than ECDSA.
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Concerning the possibility to use cryptographic combiners, TLS 1.2 does not seem suitable
to support them except the concatenation combiner as shown by [6l [10].

Integration An extension of TLS 1.2 on OQS-OpenSSL 1.0.2 based on the implementation by
Bindel et al. [5] exists. This implementation supports hybrid and quantum-safe only schemes.
In the hybrid certificates, public keys are concatenated and parsed when received. However,
this version of OpenSSL is deprecated and not maintainedﬂ Another implementation of TLS
1.2 supporting post-quantum algorithms is now available in s2n [I], 2] based on the Internet
Draft [9].

DTLS 1.2 is integrated in WolfSSL [73].

The Internet drafts [61], 9] have been submitted to IETF to help the integration of quantum-
safe schemes into TLS 1.2.

7.3.2 TLS 1.3

As TLS 1.3 is soon to be widely-used as a successor of TLS 1.2, it has been subject to analyses
of various levels. A large body of scientific research has been performed by [10, [47, [64) 63, 45]
on Internet application and client-server communication and [2I] for embedded systems.

Compatibility and Impact The design of TLS 1.3 allows for a more flexible negotiation of
cryptographic schemes, as every algorithm is negotiated separately. Therefore, post-quantum
algorithms can be negotiated directly with a new identifier. As opposed to TLS 1.2 using different
methods for combining the digital signatures can be supported by TLS 1.3. The key schedule
of TLS 1.3 is more complex than the one from TLS 1.2, so techniques inspired from [5] can be
easily applied, even though the proposed approach concatenates the cryptographic material by
default. As for the key exchange, TLS 1.3 supports multiple algorithms and can negotiate them
separately. TLS 1.3 usually conveys digital signatures via X.509 certificates, and it allows the
sending of multiple certificates. Therefore, in principle, TLS 1.3 would support the deployment
of two separate certificates (one for pre-quantum schemes and the other for post-quantum ones)
instead of one with multiple signatures would be deployed. The CertificateVerify message
used to convey a signature cannot be extended via built-in mechanisms, so it could only be
extended or duplicated with a change in the logic of the protocol.

The authors in [10] deeply analyse the technical side of integrating quantum-safe algorithms
into TLS 1.3. During the Key exchange protocol, the maximum size of the key value in the
key_share extension of Client_Hello is 65.535 kilobytes during the key exchange process. This
limitation can create issues with schemes like FrodoKEM-1344. In fact, even if 65.535 kilobytes
is large enough for FrodoKEM parameters, the limited size of Server Hello (20 kilobytes) is
not enough. If this limit were to be enlarged, FrodoKEM would function correctly. On the
other hand, schemes like NTS-KEM and Classic McEliece are too large to be handled correctly.
Concerning the digital signatures, the maximum X.509 certificate size in TLS 1.3 is 16.777
megabytes which accommodates the size of all NIST finalists. However, as for TLS 1.2, the
maximum size of the supported signature is 65.535 kilobytes which is too small for schemes like
Picnic or Rainbow. As for TLS 1.2, record fragmentation is applied for certificates of size larger
than 16 kilobytes.

When deployed in TLS 1.3, Falcon and Dilithium provide the best performance: Falcon has
fast verification time, but has slow signing performance, Dilithium, on the other hand, has very
fast signing time and slower verification time. The cryptographic scheme with a bigger impact

3https://openquantumsafe.org/applications/tls.html#ogs-openssl-provider
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on performance was SPHINCS that cause up to 190% latency, because the large sizes lead to
multiple round trips. When benchmarked in realistic Internet conditions, the packet loss rate is
around 3-5%.

Hardware optimization (like AVX2) can be extremely beneficial for the performance of cryp-
tographic operations: Falcon performs 20 times faster and Dilithium-IV with hardware opti-
mization performs faster than Dilithium-II.

When employed in a TLS handshake, the time needed to convey Dilithium-II or Falcon-512
public keys is competitive with RSA and ECDSA (with a maximum recorded delay of 55ms).
For higher levels of security, the impact of Dilithium-IV and Falcon-1024 is more sensible.

To reduce time overhead even more, it is recommended to use different cryptographic al-
gorithms across certificate chains. This technique reduces the overall handshake time of about
25% compared to single Dilithium-IV and 33% compared to single Falcon-1024. Further research
proposes to mix Dilithium and Falcon and ECC at a low level of hierarchy (intermediate CA
and endpoints) and SPHINCS and XMSS at root level.

When TLS 1.2 is employed in embedded systems, the authors of [21] perform an analogous
analysis and similar results are recorded. Experiments were conducted on two microcontrollers
with limited memory and computing power. For key-exchange schemes, Kyber and Saber are the
most performing schemes as their performance is comparable to ECDHE. Concerning signature
schemes, Dilithium, and Falcon confirm their performances as for Internet client/server com-
munication as they are both well performing. Dilithium is very efficient for key-generation and
signature operations: Dilithium-II is circa 2.8 times slower than ECDSA, and is approximately
as efficient as RSA. For verification operations, Dilithium is on average 1.89 times slower than
RSA.

Falcon is well performing for verification operations: Falcon-512’s verify operation time is
about 3.6 times the corresponding RSA verify operation and Falcon-1024 verify is about 1.7
times faster than RSA. Falcon is on average 17.90% slower than RSA for signature operations.

When Dilithium and Falcon are deployed for handshake protocols, the post-quantum schemes
provide similar performances to their pre-quantum counterparts. Experiments show that in
embedded system the size overhead increases by a few order of magnitude due to the large sizes
of the post-quantum cryptographic material, but the power consumption is dominated by the
communication transmission cost.

Integration An implementation of a hybrid version of TLS 1.3 is provided in an OQS fork of
OpenSSL 1.1.1 [52], in an OQS fork of BoringSSL [51] and in an OQS fork of WolfSSL [72].

The Internet Drafts like [31) [60, 65] [70] have been submitted to IETF to help the integration
of quantum-safe schemes in TLS 1.3.

7.3.3 SSH

The works by Crockett, Paquin and Stebila [10] and the short paper by Sikeridis et al. [63] are
the only scientific works that deal with the integration of post-quantum algorithms in SSH-2.
Crockett et al. focuses on the overall compliance of the current state of the art of SSH with
respect to key exchange and authentication. Sikeridis et al. focuses on inspecting the latency
of the handshake and study the possible overhead when SSH packets are being transported via
TCP.

Compatibility and Impact Extending the SSH cipher-suite with the new post-quantum
algorithms and combinations is supported by SSH and requires no adjustment.
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Messages in SSH are 32-bits long and can accommodate any post-quantum algorithm of
Round 3 of the NIST competition.

Concerning key-exchange, the maximum packet size supported by OpenSSH is 262.144 kilo-
bytes bytes which is large enough to support all Round 2 candidates (and by extension Round
3) except for NTS-KEM and Classic McEliece. In SSH it is possible to exchange classic and
quantum-safe keys without inconveniences [10]: “In SSH-2, each key exchange method gets to
define its own message format for its messages, so it is possible for hybrid exchange methods to
provide distinct fields for each component value”. For authentication (i.e., digital signatures),
the maximum payload for packets is 32.768 bytes and is able to support the sizes of public keys
of the finalists.

Regarding the possibility of integrating combiners, OQS’s fork to SSH by the default con-
catenates public keys (classic keys first and quantum-safe keys second).

Results reported in [I0] show that OpenSSH could successfully perform key-exchange for
every post-quantum encapsulation scheme except for NTS-KEM. It also could successfully per-
form authentication for all digital signature schemes except for Rainbow with large parameters
(Rainbow-III and Rainbow-V).

When post-quantum algorithms are integrated in SSH, [63] report that the handshake can
have a latency from a minimum of 0.5% till a maximum of 50% (Dilithium is the faster while
SPHINCS is the algorithm that causes the most latency). To circumvent this issue it is possible
to increase the T'CP initial congestion window, at the cost of increased packet loss rate.

Integration An early Internet draft [66] outlines how to implement a hybrid key-exchange in
SSH. An implementation of hybrid SSH is provided in a OQS fork of OpenSSH 7.9 [53] and of
libssh [50].

7.3.4 IKEv2

The question of integrating post-quantum X.509 certificates in IKEv2 is tackled by [29]. In their
paper, the authors inspect whether the hybrid certificates can be supported by the IKE protocol
and run some analysis using a stateless Hash Signature Scheme (HSS) as the post-quantum
algorithm.

Compatibility and Impact IKEv2 uses fragmentation for large packets that exceed the size
of the MTU. Large certificates were observed to perform “without special issues”.

However, fragmentation is applied only to IKE AUTH messages that are in charge of au-
thentication, but fragmentation will not apply to IKE SA INIT messages that transport the
public keys.

The negotiation for the session key with a hash-based signature scheme instead of RSA took
on average 200-400 ms more and the number of packets increased, but the whole sessions lasted
less than half a second. This shows that extending IKE with quantum-safe schemes will not
have a strong impact on performance.

They tested the handling of the Truskowsky [68] type of certificate implemented in
StrongSwan 5.5.0 with RSA and HSS. The results show that IKE AUTH fragmentation works
correctly even with long certificate chains with post-quantum algorithms.

Integration An implementation of quantum-safe OQS fork of StrongSwan can be found at [49].
Related work on the integration of quantum-safe algorithm in IKE can be found in the Internet-
Drafts [67), 19], but they solely concern key-exchange.
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7.3.5 QUIC

The question of integrating post-quantum X.509 certificates in QUIC is tackled by [29]. As
for IKE (Sec. , the authors inspect whether the hybrid certificates can be supported by
the QUIC protocol and run some analysis using a stateless hash-based signature scheme as
post-quantum algorithm.

Compatibility and Impact QUIC supports the use of fragmentation, compression, and
caching for the transport of large packets. These mechanisms allow large X.509 certificates
to be handled without errors.

The tests performed in [29] show that all certification chains were transferred correctly.
Timeout errors were registered at the server side due to errors in the implementation and not
on the design of the protocol. According to the authors QUIC will have minimal impact as: “It
is evident that QUIC will operate with lengthy certificates with no issue” [29].

Integration The analysis were performed on Google’s proto-quic implementation which is
deprecated at the time of writing. More details about integration of QUIC with quantum-safe
schemes can be found at [3].

7.3.6 S/MIME and CMS

The hybrid approach to S/MIME has only been investigated by [6]. This work analyses how
the hybrid X.509 certificates are handled by S/MIME and CMS and if they can support cryp-
tographic combiners.

Compatibility and Impact In S/MIME the employed algorithms are specified in a header
and more precisely in a CMS SignedData object that contains several fields. Among these the
object SignerInfo can occur several times. This object contains the attributes about the signer,
the algorithm, and the signature and other fields and can be used to deliver combined secrets.

Analysis was conducted on some libraries that implement S/MIME with different configu-
rations. Results show that backwards compatibility is reached when quantum-safe signatures
and key are stored on non-critical fields. Among the libraries tested, only Mozilla Thunderbird
failed in parsing large attributes.

Integration An integration of CMS and S/MIME can be found in the OQS fork of OpenSSL
1.1.1 [11].

7.3.7 OpenVPN

A post-quantum implementation of OpenVPN has been developed by Microsoft Research [39],
but no scientific literature has been published. It supports FrodoKEM, SIDH, Picnic and
qTESLA as quantum-safe cryptographic schemes. The experimental implementation of Open-
VPN provided by Microsoft is a fork of OQS-OpenSSL [40].

8 Conclusion

Before transitioning to a fully quantum-safe PKI, a hybrid migration is necessary. Adapting
a hybrid temporary solution ensures that we can rely on the security of pre-quantum schemes
until quantum-safe schemes are fully trusted.
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The adoption of quantum-safe schemes, especially in a hybrid setting, comes with a few
challenges. Firstly, the large sizes of the ciphertexts and signatures of the new schemes is going
to impact the communication as there are bigger data chunks that need to be transferred. Then,
moving to a quantum-safe PKI does not only entail replacing existing cryptographic schemes with
a quantum-safe variant, but also involves changing the existing infrastructure. The quantum-
safe schemes should be compatible with the current PKI and the pre-quantum PKI should also
be able to function along with the quantum-safe schemes.

In this document we have discussed the scientific work conducted on the impact of quantum-
safe schemes in the most used protocols of the Internet. Table [3] summarizes the discussion in
Section and Section [Z.3l
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Protocol Support in Libraries | Communication Over- | Support for crypto-
and Browsers head graphic combiners
CSR No adjustment required | Dilithium and Falcon | Not tested
provide the smallest
overhead
OSCP No adjustment required | minimal overhead com- | Not tested
pared to pre-quantum
schemes
CMP-EST No adjustment required | Minimal overhead Not tested
TLS 1.2 The implementation of | Sensitively increase | Only concatenation can
the libraries requires | with hash-based | be supported
adjustments on size | schemes. Not tested
limits for  Dilithium  and
Falcon
TLS 1.3 Size limits not com- | Dilithium and Falcon | Potentially supported
patible  with  sizes | provide the smallest
of some PKE/KEM | overhead, @ SPHINCS
schemes, changes in | provides the biggest
the implementation are | impact
required
SSH no adjustment required | Dilithium and Falcon | Current implemen-
provide the smallest | tation only supports
overhead, = SPHINCS | concatenation
provides the biggest
impact
IKEv2 No adjustments re- | Only hash-based signa- | Not investigated
quired tures tested and no big
impact was recorded
QUIC No adjustment required | Timeout errors caused | Not investigated
library implementation
S/MIME-CMS | Small adjustment | Not tested Potentially supported
required for Mozilla with a small adjust-
Thunderbird to in- ment of the implemen-
crease size limit tation
OpenVPN Implemented only for | No literature No literature
some schemes
Table 3: Summary of Quantum-safe Protocols
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