

HAPKIDO

And the migration to

Quantum-safe

Public-key Infrastructures

Gabriele Spini | TNO
Nitesh Bharosa | TU Delft

Agenda

>	12:00-12:15	Opening
>	12:15-13:00	Presentation by Gabriele Spini (TNO) and Nitesh Bharosa (TU Delft)
>	13:00-13:15	Lunchbreak
>	13:15-14:00	Break-out: In deelsessies aan de slag met vraagstukken en acties onder leiding van de TU Delft en TNO.
>	14:00	Afsluiting

Stelling

Mijn organisatie is gereed om de migratie naar kwamtumveilige crypto aan te kunnen.

HAPKIDO

- 1. Wat is HAPKIDO?
- 2. Wat zijn de resultaten tot nu toe?
- 3. Wat staat er op de roadmap?
- 4. Interactie: wat kun jij met HAPKIDO?

HAPKIDO

Some general info

- 5-year project, started in fall 2021
- Financed by NWO



Quantum computing and Cryptography Why HAPKIDO?

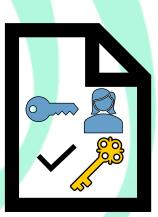
- Current asymmetric cryptography: broken by (large enough) quantum computer
 - PKIs no longer able to certify keys (can forge cryptographic digital signature)
 - Keys certified by PKIs no longer provide security guarantees (authenticity / confidentiality)

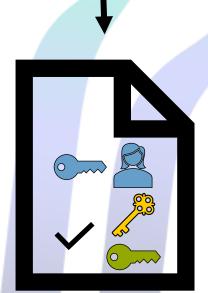
- When? Nobody knows but 10 years is considered realistic
- **)** Why bother now?
 - Store-now-decrypt-later attacks
 - Migrating complex IT systems takes a lot of time (more relevant to PKIs)

Enter HAPKIDO

The project in a nutshell

-) Hybrid Approach to quantum-safe Public-Key Infrastructure Development for Organizations
- Research project (no actual migration yet)
- Focus on hybrid PKIs No quantum technology
- Multi-disciplinary approach
 - 1. Technical
 - 2. Cryptographic fundamentals
 - 3. Governance aspects


Why hybrid?


The H of HAPKIDO

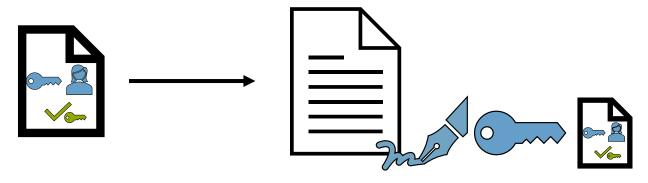
-) Hybrid: switching from classical to post-quantum in one go ("big-bang approach") not feasible
 - Too many parties and systems involved: interoperability
 - Insufficient trust in post-quantum building blocks: can't start too early
- Therefore: aim for systems that use both classical and post-quantum
 - When interfacing with "legacy" party/system: ignore post-quantum part
 - When possible, use both. System secure as long as one component secure
- **)** However, this is not trivial:
 - Details are complex and security proofs are sometimes lacking
 - Attack surface increases
 - Need to "manage" both classical and post-quantum parties/systems

HAPKIDO

HAPKIDO in the big picture

What else is happening?

- Standardisation of Post-Quantum Crypto:
 - Building blocks: NIST, ISO
 - Protocols: IETF, GSMA, ETSI
 - Certificates (X509): ITU-T ("alternative" fields), IETF ("composite signature" drafts)
- **)** Research initiatives:
 - BSI in Germany (focus on "German PKIOverheid")
 - Research projects from number of TSP
 - NIST NCCOE



Overview of Technical track

Building Proofs of Concept

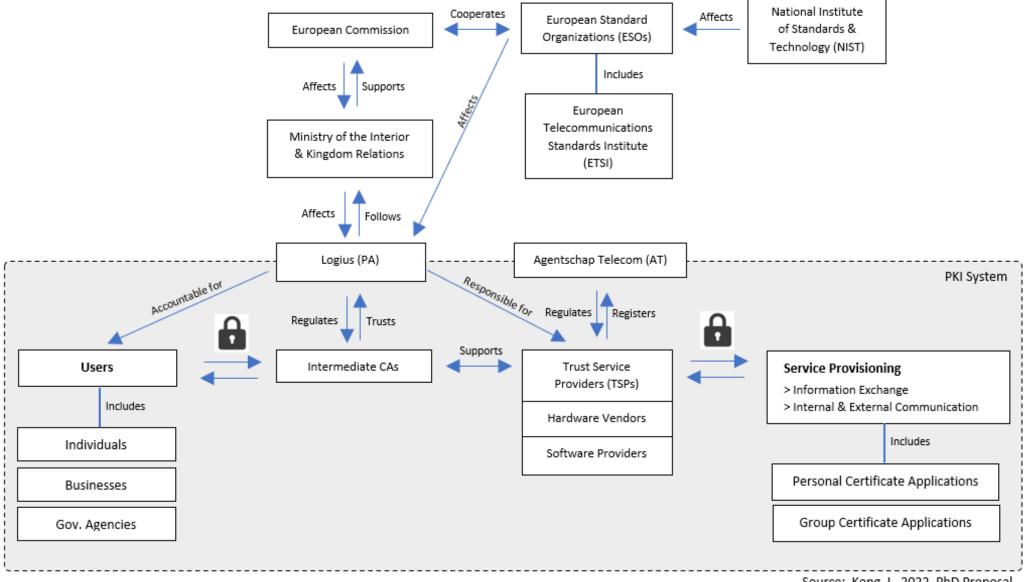
) Focus: PKIs for electronic signature of document

-) (Much) less studied than e.g. TLS
- Legally binding
- Regulated in eIDAS
- Working hybrid version of DSS (official software from European Commission)
- **)** Pending modification of PDF reader for testing & validation **HAPKIDO**

Overview of Cryptographic track

(Keeping it simple)

- **)** Focus on mathematical security proofs
 - Well-established for classical cryptographic systems, much less for quantum-safe ones
 - Take quantum attackers into account
- **)** Results so far:
 - Security of KEM combiners
 (intuition: combining two encryption schemes into a single hybrid one)
 - Found mistake in security proof of Dilithium and fixed it



Governance landscape Spelers op PQC **NIST ETSI** Macro **European Commission** (Supra)national ITG BZK TU Delft TNO CWI **IBM** K Meso Logius Microsoft (Inter)organizational Google ITG Ν QTSPs Micro PKI users in Government, PKI Governance Banking, Telecom etc,

Governance landscape

Source: Kong, I. 2022. PhD Proposal.

Governance challenges

Technological Context	Organizational Context	Environmental Context
 Incompatible Legacy System No Universal QS Algorithm Ensuring Security of Root CA Complex PKI Interdependencies 	 Lack of Urgency Knowledge Gaps on Quantum Threats Lack of In-house Management support Unclear QS Governance 	 Lack of Awareness No Clear Ownership & Institution Lack of Policy Guidance Need for Various Stakeholders

Source: Kong, I., Janssen, M.& Bharosa, N. 2022. Challenges in the Transition towards a Quantum-safe Government.

Whats on the roadmap (1/2)

The way forward: 2023

- **>** First full PoC
- > Requirement analysis
- **)** Report on governing quantum-safe PKIs
- Report on quantum-safe cryptographic combiners

Whats on the roadmap (2/2)

Looking forward: 2024 and beyond

- More PoCs, likely with different applications
- **)** Serious Game: collective action game
- Massive Online Open Course
- Self-assessment tool
- Fig. 1. Enrich website https://tno.nl/hapkido

